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SPHERICAL  BALLOON  RESPONSE TO THREE-DIMENSIONAL 
TIME-DEPENDENT FLOWS 

SUMMARY 

To  fully  understand what a balloon wind observation  means, it is 
necessary  to know the  response  properties of the  balloon  relative  to  the im- 
posed wind field. In this  report,  the  basic  equations of motion for a spheri- 
cal balloon are derived  with  the  assumption that the  atmosphere  affects  the 
balloon,  but  the  balloon does not affect  the  atmosphere.  The  response of the 
balloon  to  the wind field is affected by aerodynamic  drag  and lift forces,  vir- 
tual  mass  effects,  the  Archimedean buoyancy forces,  and  dynamic buoyancy 
forces. An analysis  shows  that  the  Coriolis  terms in the  equations of motion 
can  be  neglected  for  most  rising or  falling  balloons. 

The equations of motion for a spherical balloon are linearized  about 
a terminal  velocity state in  which  the  horizontal  velocity is in equilibrium 
with the  mean  horizontal  velocity of the  atmosphere,  and  the rise or  f a l l  rate 
is that which is obtained when the  Archimedean buoyancy force  balances  the 
aerodynamic  drag  force.  The  mean  atmospheric flow is assumed to be a 
space-time  invariant  horizontal flow. The  atmospheric flow and  the  balloon 
velocity  vector are perturbed  by  superimposing  small  perturbations  such  that 
the  square  and  higher-order  terms in perturbation  quantities  can be neglected 
with respect to first-order  terms. The  environmental  perturbation  velocity 
field is a three-dimensional  time-dependent  vector field, which is represented 
as a four-fold Fourier  integral involving three mutually  orthogonal  wave 
numbers  and a frequency.  The  components of balloon velocity are, in turn, 
represented in terms of Fourier  integrals which  involve a frequency  that is a 
function of the  wind  field  wave  numbers,  frequency,  and  the  velocity  vector 
of the  unperturbed wind  field.  The  combination of these  Fourier  representa- 
tions  with  the  equations of motion results in expressions which relate the 
Fourier  amplitudes of the  bdloon  to  the  Fourier  amplitudes of the wind field 
via a three-fold  integral.  This  integral  convolves  the wind field Fourier am- 
plitudes with the  ballon  system  function  over  the  domains of the wind field . 

horizontal wave numbers  and  frequency. 



The  nonstationary  spectra of the  balloon  velocity  vector are calculated 
in terms of the nonhomogeneous and  nonstationary  spectra of the wind field. 
The results are simplified by assuming  that  the  wind  field is statistically 
stationary  and homogeneous.  The stationary  balloon  spectra are thus  obtained 
as three-fold  integrals of the  wind field spectra  modified by the  balloon trans- 
fer 'function. The  introduction of Taylor's  hypothesis  reduces  these  integrals 
to  algebraic  expressions  which show that  the  spectra of the  corresponding 
components of velocity of the  balloon  and  wind  field are proportional  and  that 
the function of proportionality is a function of the  balloon  parameters  and  the 
frequency of the wind perturbations  relative  to  the balloon. 

INTRODUCTION 

It is widely  recognized  that  meteorological  balloons  do  not  respond 
perfectly  to  the wind fields  they  traverse. A number of analyses  have  been 
published  during  the last 10 years which attempt  to  define  the  nature of balloon 
responses  to  the wind. Among these  works are those by Reed [I] , Lewis and 
Engler [ 21 , Zartarian  and  Thompson [ 31 , Eckstrom [ 41 , Scoggins [ 51 , and 
Fichtl [ 61 . However,  in all cases  the  analyses have  an  incomplete set of 
equations of motion as their  starting point. In addition,  the  analyses are 
restricted  to  rather  simplified  atmospheric flows in which  only vertical  varia- 
tions of the  wind are permitted.  This  report  presents  what are believed  to be 
complete  equations of motion  for a spherical balloon  and  also  presents a 
linear  theory of spherical balloon' response  to  three-dimensional,  time- 
dependent  atmospheric  flows. 

EQUATION OF MOTION 

The  equations of motion for a spherical balloon of mass m (skin  and 
inflation gas) relative to a Cartesian  frame of reference  attached  to  the earth 
with  the  x3-axis  directed  toward  the  zenith  and  the x1 and xz axes in a plane 
tangent  to the earth (e. g.,  directed  toward the east and north) are given  in 
tensor  form  by 
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-v-  , a? 
=k 

where t denotes time and all subscripts  and  superscripts take on values I, 
2, 3. We shall use the  Einstein  summation convention; i.e., repeated  sub- 
o r  superscripts imply summation  from I to 3. The  quantities  v  and \ de- 
note the k components of velocity of the  center of gravity  (cg) of the  balloon 
and the atmosphere at the location of the cg in the  absence of the balloon. 

k 

The first  term on the  right-hand side of this equation  denotes  the 
gravitational body force on the  balloon, where  g is the  magnitude of the 
gravity  vector and 

The second and third  terms denote the k components of the  aerodynamic 
drag and lift forces. The drag and  lift forces  act  parallel  and  normal  to the 
relative wind vector The standard  assumed  forms of these  forces uk - V k *  
which  have been used in analyses of balloons a re  

able  evidence appears  to show that these  representations are V a l i d  for the 
Reynolds number  region of typical  balloons; i.e., I O 4  5 Re < io6,  where 
Re = V~D/V , T3 being the mean rise o r  fall rate, D the balloon diameter, 
and LJ the coefficient of kinematic  viscosity. 

The fourth  term is the force which results from  the  apparent  or  vir- 
tual mass effect,  where  m is the  apparent  mass  and D . is the i component 

a 1 
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of the angular velocity  vector  associated  with  the  rotation of the  earth.  The 

quantity e.. is the  alternating  tensor which has  the following  properties: 
11 k 

' I , i f j # k,  even  permutation 

-1 , i # j # k, odd permutation e.. = '11 k 
0 , otherwise. 

t 

The  fifth term is the  force  on  the  balloon resulting  from  atmospheric 
pressure  gradients, ap/axk,  where V is the  volume of the  balloon.  It is 

reasonable  to  hypothesize  that  the  pressure  gradient  force on the  balloon 
should be proportional  to  the  atmospheric  pressure  gradient at the  balloon cg 
and  the  volume of the  balloon.  However, it should be remembered  that the 
pressure  gradient is that of the  atmophere in the  absence of the  balloon. A s  
in the  specification of the  atmospheric  velocity  vector at the  balloon  cg, it is 
assumed  that the atmosphere affects the  balloon  but  the  balloon  does  not af- 
fect  the  atmosphere.  Thus,  the  form of the pressure  gradient  force in equa- 
tion ( I )  is a hypothesis.  However, as we shall see, it leads  to  the  accepted 
form of the  Archimedean buoyancy force  for  balloons. 

The  net  Vector sum of the  forces on the  right  side of equation (1) must 
be  balanced by the  inertial  reaction,  which  is  the left side of this  equation. 
The two Coriolis  terms  in equation (1) which contain $2 result from  the  fact 

that  the  frame of reference,  attached  to a point  on  the  surface of the  earth, is 
not an  inertial  frame.  These  terms are a natural  consequence of the  trans- 
formation of a Lagrangian  time  derivative of a vector  relative  to  an  absolute 
o r  inertial  frame of reference to an  accelerating  frame of reference. 

i 

ELIMINATION OF THE PRESSURE  GRADIENT FORCE 

The  inviscid  equations of motion of the  atmosphere will be used  to ob- 
tain  an  expression  for  the  pressure  gradient 8 p/a %. These  equations are 
given by 

4 
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Elimination of the pressure  gradient between  equations ( I )  and (2) yields 

dvk ( m + m )  - + (2m + m  ) n .  v. ei jk= - g ( m  - a dt a 1 1  ‘k3 

1 J  

where  m (= pV) is the  mass of the  atmosphere  displaced  by  the balloon.  The 

first term on  the  right side of this  equation is the well-known Archimedean 
buoyancy force which results from  combination of the  gravitational body forces 
in  equation ( I )  and ( 2 ) .  The last term, the  dynamic buoyancy force,  results 
from  inertial  accelerations of the  atmosphere. 

0 

At this point, a brief  discussion of the  various  derivatives in equation 
(3) is appropriate. The derivative in the last term on the  right  side of equa- 
tion ( 3 )  is the  material  derivative following the  atmospheric  particle at the 
balloon  cg. It can  be  expressed as 

To calculate  D /Dt, we perform the Eulerian  operations on the  right side of 

equation (4) and  then  evaluate at the location of the balloon  cg.  The differenti- 
ation  indicated on the left side of equation (3) and in the  apparent mass   term 
on the right  side  denotes a change following the  balloon. To evaluate the de- 
rivative of % in  the  apparent  mass  term, we  note that 

Uk 

d”k a% -=- 
dt at j ax. 

J 
+ v  - . 

Thus,  to  determine  the change of following the  balloon, we execute  the 

-Eulerian  operations - on the  right - side of equation (5) and  then  evaluate at the 
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location of the balloon. The  difference  between  the  operators  d/dt and D/Dt 
becomes  obvious  by  comparing  the  right sides of equations (4) and (5) . 

Utilization of equations (4) and (5) permits equation (3) to be emres- 
sed as 

GENERALIZED  RESPONSE  PROBLEM 

The  motivation  behind  the  formulation of the  equations of motion for a 
balloon is the  calculation of the responses of balloons  to  atmospheric  fields 
of velocity.  Accordingly,  this  permits one to  determine how well a balloon 
can  measure  the  wind  and  what  that  measurement  means. We denote the 
Lagrangian  displacements of the  balloon cg  relative  to the frame of reference 
attached  to  the  earth  with  Xk(t) . The  Lagrangian  displacements are functions 

of time  and by definition are related  to the  balloon  components of velocity 
through the expression 

Substitution of equation ( 7) into (6) yields 

d25c a. 
( m  + ma) + ( 2m + ma) J dt e,ijk = -g (rn - mol dk3 
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a”k 3 dX.. 
+ m  u - + m  - - J - + ( m  +2mo) n . u . e i j k  . o j aX. a ax. dt a 1 1  1 I 

8) 
TSS tensor equation represents  three  equations  for the  balloon  coordinates. 

TO solve  these  equations, we must  specify  the initial conditions and the 
wind field.  Substitution of the known wind field into equation ( 8) and evalua- 
tion at X = X (t)  yields  the  equations for the  Lagrangian  displacements. 

 he solution of these  equations  yields  the  functions X (t)  and  hence 

(Vm 
fied winds along the  trajectory u [s ( t )  , t l  to  determine how the balloon 

responds to the prescribed wind field. 

m m  

m 
I a m / & ) .  The balloon velocities v (t) can be  compared with the speci- m 

m 

The inverse  problem is to  specify  the  functions X (t)  for a single  bal- m 
loon track and determine  the wind field  u [% (t), t l  along the balloon  track. 

Equation (8) is a partial differential  equation in u and  because it is a partial 

differential equation,  the stated inverse  problem  cannot be solved. To solve 
this equation for x, one must do the  impossible;  namely, release an infinite 

number of balloons so that  can  be  determined as a function of time  and 

space. One could then  solve  equation (8) for  urn(%, t) and then  evaluate  for 

the  particular balloon in  question  to  obtain  u [ %( t) , t l  . 

m 

k’ 

m 

SOME SIMPLE  BALLOON  PROBLEMS - DEFINITION OF A 
BALLOON  TIME  CONSTANT 

Let; us  consider  the  simple  situation of a vertically  rising  or  falling 
balloon in a quiescent  nonrotating  atmosphere.  Furthermore,  the  aerody- 
namic lift is assumed  to be zero.  Under  these  assumptions,  equation ( 6 )  
reduces  to 

Let us assume 

vg = T3 + v8 , (10). 
7 



where T3 is a mean rise o r  fall rate in equilibrium  with  the  mean flow drag 
force  and buoyancy force,  such that 

i - p ACD IT3/ T3 = g  (mo - m) . 2 

The quantity v! is a superimposed  perturbation which is sufficiently  small in 
magnitude such  that  second-order  terms in vi  can be neglected with respect  to 
first-order  terms. Substitution of equation (10) and (11) into equation (9)  
yields 

Thus, we are considering  small balloon velocity  perturbations  superimposed 
on a mean  terminal  vertical rise o r  fa l l  rate. Integration of equation ( 12) 
yields 

where 

or  in view of equation 

m + m  

Im - m o t  
a T =  

IV3 I 

The  quantity T is the  balloon  time  constant  and is that time  required  for  an 
initial balloon vertical  velocity  perturbation  from  terminal  velocity  conditions 
to be reduced  by a factor of e-'. The  balloon time  constant is in the order of 
a few seconds  for  most  meteorological  balloons,  and it commonly  occurs in 
various  theories of the  responses of balloons  to  atmospheric  motions [ 6,7]. 

For a neutrally buoyant  balloon,  the time  constant is defined in terms 
of the  solution of equation ( 9) for  m = m . We take v3 to be initially  positive 

0 
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[v3( 0) > 01 and assume that v3 is positive definite, so that upon being  dis- 
placed  the  balloon will immediately decelerate as it passes  through  the  atmos- 
phere.  This  means we can  drop  the  absolute  value  sign in equation ( 9) and 
obtain  the  solution 

When t/T = i, we find from  equation (15) that  v3(t) /v3( 0) = 1/2. Thus,  the 
quantity  T is the  time  required  for  the  initial  velocity of $neutrally buoyant 
balloon  to be reduced by a factor of one-half  when  the  only effect  present is 
that of aerodynamic  drag. 

THE CORIOLIS TERMS 

Let  us  consider the Coriolis  terms in  equation ( 6 ) .  l'o neglect the 
Coriolis  terms on the left side of equation ( 6 )  we could  require 

In the  analysis  that  follows, we shall set (2m + ma) /( m + ma)  equal  to its 

maximum  value of 2. If these  inequalities are satisfied  for  this  value of 
(2m + m ) /( m + m ) , they  will be satisfied  for  all  values of this  parameter. 

In the  case of an  ascending o r  descending  balloon,  the  vertical  velocity  should 
be near  terminal  conditions, so that we can  cast equation ( 18) into  the form 

a a 
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Now,  Iv3 I /  /vi I is in the  order of unity, T has  value  approximately  equal  to a 
'few seconds, and n 2  - s-l. Thus,  condition (19) is satisfied  for  most 
rising o r  falling  balloons. 

To estimate the left side of equation ( 171, we use  the  frequency 52 B 
of the wind perturbation  relative  to a rising o r  falling  balloon  to estimate the 
operator  d/dt  in  equation (17) and  thus  require 

Now, I vi I /v21 1 s o  that  equgtion ( 20) requires S2 B/'[ C2 [ >> 1. The  quantity 

n is on the order of 27r x IO-, for a balloon  with rise o r  f a l l  rate equal  to 

approximately 5 m- s-' ascending o r  descending  through a wind  perturbation 
with a wavelength  approximately  equal  to 500 m and I S 2  3 [  IOea s-l , SO that 

B 

'B/'3 (Y 27r x . Thus  condition (20) o r  (17) appears to be satisfied  for 

typical  perturbations on the  wind  profile. 

Let u&ow consider,  condition ( 16) . For a rising  or falling  balloon, 
v3  tends  to  have one sign  with  magnitude  approximately  equal  to  the  terminal 
velocity. It is highly  unlikely that Q 2  v3 = a 3  v2 for all t, so that  the  possi- 
bility of the  denominator  vanishing  in  condition ( 16) will only occur at a few 
brief instants at most. E the  denominator  vanished,  the xi component  of the 
Coriolis effect would then  be zero, and we would not  have  to  be  concerned 
with  condition (16) .  Since 

we replace  condition ( 16) with 

i o  



where we have used lv I as an estimate of Idvi/dt I .  Because I n3 I 
in mid-latitudes and Iv,! = lv21 , we have 

B i  

It is clear  from  the  previous  comments  that this expression is satisfied  for 
the  rising o r  falling balloon. 

Let  us now consider  the  Coriolis terms on the  right side of equation 
(6) . To neglect  these  terms we could require  that 

dv2 

In, q l  
1 x 1  > > 2, 

and 

Since lu,l - lvl l ,  conditions  (24)  and  (25) are  satisfied  because the 
replacement of lull with I v i /  yields  conditions (17) and ( 18) , which  have 
already  been  shown to be satisfied by the  balloon  motions. We replace con- 
dition ( 2 3 )  with 

as in the  case of condition (16) , we have estimated IdvJdt I with sZ,lvil. 

Now, Iuz 1 approximates Iv2 I, and  [v3 I > /us I for  most  rising  or  falling 
balloons.  Thus, 

, l N  



so that  condition (26) is satisfied  because  condition ( 2 i )  was found to be valid. 
Thus, it appears  that  the  horizontal  Coriolis  terms  in equation (6)  can be 
safely  neglected  against  the  horizontal  balloon  acceleration  terms  referenced 
to  the  relative  frame of reference  and the vertical  Coriolis  terms  can be 
neglected  against  the  Archimedean buoyancy term. 

LINEAR  PERTURBATION  EQUATIONS 

In the  standard  linearized balloon response  problem, one considers  the 
response of the  balloon  to  infinitesimal  wind  perturbations  superimposed on 
an  unperturbed  wind state which is spatially  and  temporally  invariant.  The 
assumed  infinitesimal  nature of the wind perturbations  permits one to  assume 
that the  balloon  responses are infinitesimal  and  thus  allows one to  pose  the 
balloon  response  problem in a linear context.  The  motivation for  this  pro- 
cedure is the  simplicity of the  resulting  equations which facilitate a relatively 
straightforward  calculation of the  response  properties of the balloon.  The 
analysis  herein  neglects  the  Coriolis  terms  in  equation ( 6 ) .  

We assume  that the  wind field  can  be  represented in terms of a spatial- 
ly  and  temporally  invariant  mean component and a superimposed wind per- 
turbation which can depend on both space  and  time: 

Henceforth; overbar and prime indicate a mean o r  unperturbed  state  and a 
superimposed  fluctuation.  The  assumed  mean wind field  executes  horizontal 
flow, so that 

The  balloon  velocity  fluctuations are  represented in a similar way; i.e., 

Vi( t) = 5: + v: (t) . (30) 
1 1  
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Unlike the  assumed  mean  wind  field, T3 # 0. It is assumed  that  the  mean 
horizontal  motion of the  balloon is in equilibrium with the  environmental wind, 
so that 

- 
v . = i i  i = l ,  2 . 
1 i’ 

The aerodynamic lift coefficient  vector is a timedependent 
aerodynamic  lift  coefficients are taken to be equal  to  zero, 

” 

CLk= 0 

(31) 

vector.  The  mean 

Thus, the life coefficient  vector is assumed  to be a perturbation  vector. 
Fichtl, DeMandel,  and Krivo [ 71 have  shown for a sufficiently fast rising or 
falling balloon that if the  horizontal lift coefficients  and the  wind  and balloon 
velocity  perturbations  are of first-order  smallness, then  the  vertical  lift  coef- 
ficient is a second-order  quantity. In other  words,  to  within first order, the 
lift force  acts  in  the  horizontal  plane  for a sufficiently  fast  mean rise o r  f a l l  
rate. Because  the  lift  coefficients  can  vary in time, it is reasonable  to allow 
for the drag  coefficient  to depend on time. Thus, we shall  assume  that 

- c D = c  + C D  1 . D (33) 

It is assumed  that the mean or  unperturbed  quantities  satisfy  the  equations of 
motion,  equation ( 6 ) ,  so  that in  view of the above assumptions,  the  horizontal 
equations of motion of the balloon are identically satisfied. The vertical  equa- 
tion of motion for the  balloon reduces  to 

- - -pACD I l T 3 1 v 3 - g ( m - m o ) = 0  . 
2 

Substitution of equations (28) .  (30) , and (33) into  the  balloon equations of 
motion [equation ( 6 )  1, utilization of conditions ( 2 9 ) ,  (31) , (32) , and (34a) , 
and  the  neglect of second- 

dvi V i - + y(i) T = p  
dt 

1 

and  higher-order  terms  yields 

U. 
t 
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where 

m + m  

’= m + m  
0 a 

I 

a 

and 
m 

m + m  
a a =  

a 

(37) 

The Einstein  summation convention does not apply  to terms containing y(  i) . 
In deriving  equation ( 3 4 b )  , we have assumed  that all velocity  perturbations and 
drag  and  horizontal lift coefficient  fluctuations are first-order  quantities, 
while  the vertical lift coefficient is a second-order  quantity. 

For a sphere,  the  apparent  mass is related  to  the  displaced air mass 
through  the  relationship 

i 
a 2 0’ 

m = - m  (39) 

so  that  the  parameters ,u and a can be expressed in terms of one parameter, 
E ;  thus, 

n 
J 

’ = i + 2 E :  , 

i a =- 
i + 2 €  ’ 

where 

E =- 

0 

m 
m 
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Equations (34a) and (34b) are the basic equations of the  linear  response 
problem. To solve  equation (3&) , one must  specify  the  environmental’wind 
perturbations. In the  special  case  in which u! is a function of x3, only  the 

1 

term involving I.( in  equation (34b) vanishds  identically.  This  means  that, in 
the context of the linear  response  problem,  the  dynamic buoyancy effect 

L the wind perturbations have  only vertical  variations. vanishes when 

FOUR IER  INTEGRAL  REPRESENTATION OF WIND  FIELD 
AND  AERODYNAMIC  COEFFICIENTS 

We hypothesize  that  the wind perturbations  can  be  represented with a 
Fourier  integral as fo~~ows :  

where ( ) denotes Fourier amplitude  and d K = d K 1  d K 2  d K 3 .  The quantity i in  the 
exponent is the a and whenever i occurs as a coefficient it is understood 
to be this quantity; otherwise it is an index. The quantity K denotes  the k 

component of the radian wave number  vector and w is the  radian  frequency. 

A 

k 

All quantities which involve u! in equation (34b) are interpreted  to 
1 

mean  that we perform  the  indicated  operation on u! and  then  evaluate at 

x = Xk(t). To do this, we must perturb the  Lagrangian  coordinates of the 

balloon. Integration of equation ( 7) yields 

1 

where, without loss of generality, we have  taken  the  initial  position of the 
balloon to be at the origin of the  coordinate  system [s ( 0 )  = O] . Substitution 
of equation (30) into  equation (44) yields 

where 
t 



The  quantity %(t) should be a perturbation  quantity of first o r  higher  order 

of smallness  because  the sign of vr  (t)'will  fluctuate in time,  thus  tending  to 

cause  the  positive  and  negative  contributions  to  the  integral  to  cancel. We 
will  assume  that t) is a quantity of first-order  smallness. 

k 

32 
Substitution of equation  (43)  into  the  right side of equation (34b) and 

qvaluation at the  location of the  balloon  given by equation ( 45) yield 

dv ' Vr  
- + y(i)  - = [ 2  -y(i)] - 
dt  T 

- 
i i F 3 I  V 3 

CLi - di3 - - - cb 
TCD TCD 

where we have  neglected  second- and higher-order  terms  in  fluctuation 
quantities.  Let  us  set 

so that  equation (47) can be expressed as 

dvi V' IT3 I V 3 
-. + y(i) - = [Z - y(i)j y i 
dt T 

CLi - 6i3 - c;, 
TCD TiZD 

where 
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I 

and 

The  quantities C’ and C’ are functions of time which can  also be Li D 
represented as F6urier integrals: 

and 

00 
A int 

C b =  C D e   d n  
“00 

Substitution of equations ( S i )  and (52) into  equation ( 49) yields 

dv’ k V’ 
k 

- +  y(k) T = Gk ( a )  e dn, dt 

00 

is2 t 
-00 

where 

FORCED  RESPONSE OF BALLOONS 

To obtain  the  forced  response of a balloon, we assume that 

m 
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Substitution of equation (55) into  equation (53) yields 

Thus,  the  forced  response of a balloon  could be calculated by substituting 
equation  (56)  back into  equation  (55) to  yield 

The  power spectra of the balloon velocities  are useful statistics for 
describing  the  properties of the balloon  motions. To obtain the  generalized 
power  spectrum of v' (t) , we multiply  equation  (56) by its complex conjugate 

evaluated at a ?, so that 
k 

A T2 <Gk (a) G"i, ( a ? ) >  e\(") vz ("b = $ ( k ) + i y ( k )  T (52 - a t )  + 52 TZ ' ( 58) 

where <( ) > denotes  the  ensemble  average  operator.  Substitution of equation 
( 5 4 )  into  equation (58) yields 

...., .. 

where we have assumed  that  the  Fourier  amplitudes C ( a) and CD (a) are  

uncorrelated  with B ( 0) .  The  second  and  third  terms on the  right  side of 
equation  (59) are the  contributions  to  the balloon response  spectra  from the 
fluctuations in the  aerodynamic lift and drag  coefficients.  These  terms have 

A A 

Lk 
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been  analyzed  in  detail  for  the  Jimsphere  balloon [ 51 by Fichtl, DeMandel, 
and  Krivo [ 71 . The first term which  we shall denote as S( n, at) is the 
contribution  to  the  balloon  response  sepctra  from  the  wind  perturbations  along 
the  balloon  track.  The  remainder of this  report  will  be  concerned  with  an 
analysis of this  term. 

Substitutuion of equation ( 50) into S( 52, $2 I )  yields  the  balloon  response 
spectrum in terms of the  spectrum of u' - i '  

where 

The spectrum S (n, at) is the  generalized  power  spectrum as defined k 
by  Bendat and  Piersol [ 81 . Another  useful  representation of the  spectrum is 

-00 

This spectrum is the  nonstationary  spectrum as defined  by  Kinsman [ 91 in his 
analysis of ocean  waves. 

STATIONARY BALLOON  RESPONSE 

If the  balloon  response is statistically  stationary,  then Ik must be k 
time invariant, which means S( n , n l) must be of the  form 

19 



This  implies 

Substitution of equations (64.) and (65) into  equation ( 6 0 )  yields 

This result is the  stationary  spectrum  for  the k component of balloon  velocity 
resulting  from a statistically  stationary  and homogeneous  wind  field. 

WIND  FIELD WITH ONLY VERTICAL  VARIATION 

The result given by equation ( 6 6 )  shows  that  the  spectrum of a com- 
ponent of balloon velocity is related  to a three-fold  integral of the  four- 
dimensional  spectrum of the corresponding  component of the wind. In the 
special  case in which the  wind only has vertical  variation, we must have 

so that  equation (66) reduces  to 

The  quantity 9 ( ) is the  one-dimensional  wave-number  spectrum of the 

wind along  the  vertical  transformed to a frequency  spectrum  via  the  trans- 
formation 

k 

A detailed  account of equation (68) can be found in Reference 6. 
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RESPONSE OF BALLOONS TO ATMOSPHERIC FLOWS IN 
WHICH  TAYLOR'S  HYPOTHESIS I S  V A L I D  

In many  instances,  atmospheric  turbulence  and  other types of stochas- 
tic flows seem  to obey Taylor's  frozen eddy hypothesis [ 101 , which states that 
local  changes are produced by advective  effects or  

This  means  that  the  spectrum of the wind must be of the  form 

so that  integration of equation ( 66) with this representation  yields 

The quantity Q, ( a )  is a one-dimensional  spectrum  given by 

0 0 0 0  

The result given  by  equation  (72) is identical  to  the  form of the result  given 
by equation (66). The assumptions,  however, which lead  to  the two results 
are different.  The  result  [equation  (68)] is a special case of equation  (72) 
and  was  obtained by assuming  the wind field  can  vary only in  the  vertical. 
This  assumption is rather  restrictive so that  the  result given  by equation  (68) 
is of only a limited interest. On the  other hand, the  result given  by  equation 
(72) is intriguing  in  that,  except  for  the  basic  assumptions of the  perturbation 
scheme, we have  only assumed  that  Taylor's  hypothesis is valid at each  level 
(eddies are transported by the  mean  wind).  Taylor's  hypothesis is not a very 
restrictive  assumption  and is commonly  invoked in studies of atmospheric 
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turbulence.  The  hypothesis  appears  to be valid  for a wide variety of situations 
[ I O ]  . The result  [equation ( 72) ] says that, if the  mean wind is height- 
invariant,  then it is possible  to  compute  the  one-dimensional  spectrum of the 
k  component of the  turbulence  velocity  vector  directly  from  the  spectrum of 
the  corresponding  components of balloon  velocity.  The  result  offers many 
possibilities  with  regard  to  turbulence  measurements  with  balloons. If the 
mean wind is not reasonably  constant  with  height o r  if the  Fourier  components 
propagate  relative  to  the  mean flow, thus  voiding  the  application of Taylor's 
hypothesis,  the  simple  result given by equation (72) fails. 

Evaluation of equation (43) at the  location of the  balloon  and  utilization 
of equation (70) yields 

where we have put 

A A 
U. ( K  W )  = U . ( K  6 ( W  - U. K . )  
1 k' 1 k  J J  

Now, V3t = x3, so that  equation (74) states that  the  horizontal  components of 
turbulence (uI and u;) along a balloon track in a space-time  invariant  hori- 
zontal  mean flow are lateral velocity  fluctuations  and  the  vertical  velocity 
perturbations  also  along  the track are longitudinal  fluctuations if Taylor's 
hypothesis is valid.  This  means  that 9 and 9 in the context of equation (72) 
are lateral spectra  and 9 is a logitudinal  spectrum. 

CONCLUSIONS 

The  interpretation of balloon data is not a straightforward  procedure. 
This is especially  true if the  balloon tranverses all o r  a large portion of a 
flow field  Fourier component. If the  waves move  sufEiciently  slow relative 
to  the  balloon rise rate and if the  wave lengths of the  Fourier components are 
sufficiently long, then  the  balloon  essentially  measures a mean flow velocity. 
However, if the  waves are sufficiently  short  and  have  phase  velocities on the 
order of the balloon rise rate, then  the  interpretation of a balloon wind 
measurement  becomes  difficult. In this  report, we have  attempted  to define 
a complete set of equations  for  spherical  balloon  response  studies  and have 
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calculated  the  linear  response  properties of a spherical balloon  to a  three- 
dimensional  time-varying  wind  field. We found that, in the  case of stationary 
and  homogeneous  flows, the power spectra of the  balloon  components of ve- 
locity are related  to a three-fold  integral of the three-dimensional  frequency 
spectrum of the  corresponding  components of the wind  modified by a balloon 
system function [equation ( 6 6 )  ] . We found that, in the  special  case in which 
Taylor's  hypothesis is valid at each  level,  the  above-stated  integral  can be 
evaluated  to  yield  the  result that the  power spectra of the  balloon  components 
of velocity are directly  proportional  to the  one-dimensional spectra of the 
corresponding  components of a i r  velocity along  the  balloon track  relative to 
the  mean flow. The  function of proportionality  in  this  case is the  system 
transfer function of the  balloon which is a known function. This  result is 
identical  in  form  to  that  obtained by previous  investigators  (noted  in  the  Intro- 
duction) for  the  case  in which only vertical  variations of the wind field  are 
permitted. Our analysis  showed  that  the  horizontal and vertical balloon ve- 
locity  spectra  are  lateral and  longitudinal. These  results  offer  intriguing 
possibilities  for  turbulence  research with balloons  because  Taylor' s hypo- 
thesis is not an unduly restrictive assumption.  This  analysis  shows  that it is 
possible,  in  principle,  to  obtain  longitudinal and lateral  spectra of turbulence, 
provided  the  underlying  assumptions of the  analysis  are  reasonably  satisfied. 

George C. Marshall Space  Flight  Center 
National Aeronautics  and Space Administration 

Marshall  Space  Flight  Center,  Alabama,  February 11, 1972 
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